Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
2.
Proteomics ; 23(17): e2200323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365936

RESUMO

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Assuntos
Proteínas , Reprodutibilidade dos Testes , Proteínas/metabolismo , Ligação Proteica
3.
Front Mol Biosci ; 9: 978310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148013

RESUMO

Protein-DNA interactions play a crucial role in gene expression and regulation. Identifying the DNA binding surface of proteins has long been a challenge-in comparison to protein-protein interactions, limited progress has been made in the development of efficient DNA binding site prediction and protein-DNA docking methods. Here we present ProDFace, a web tool that characterizes the binding region of a protein-DNA complex based on amino acid propensity, hydrogen bond (HB) donor capacity (number of solvent accessible HB donor groups), sequence conservation at the interface core and rim region, and geometry. The program takes as input the structure of a protein-DNA complex in PDB (Protein Data Bank) format, and outputs various physicochemical and geometric parameters of the interface, as well as conservation of the interface residues in the protein component. Values are provided for the whole interface, and after dissecting it into core and rim regions. Details of water mediated HBs between protein and DNA, potential HB donor groups present at the binding surface of protein, and conserved interface residues are also provided as downloadable text files. These parameters can be useful in evaluating and validating protein-DNA docking solutions, structures derived from simulation as well as solutions from the available prediction tools, and facilitate the development of more efficient prediction methods. The web-tool is freely available at structbioinfo.iitj.ac.in/resources/bioinfo/pd_interface .

4.
Structure ; 29(11): 1303-1311.e3, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34520740

RESUMO

An accurate understanding of biomolecular mechanisms and diseases requires information on protein quaternary structure (QS). A critical challenge in inferring QS information from crystallography data is distinguishing biological interfaces from fortuitous crystal-packing contacts. Here, we employ QS conservation across homologs to infer the biological relevance of hetero-oligomers. We compare the structures and compositions of hetero-oligomers, which allow us to annotate 7,810 complexes as physiologically relevant, 1,060 as likely errors, and 1,432 with comparative information on subunit stoichiometry and composition. Excluding immunoglobulins, these annotations encompass over 51% of hetero-oligomers in the PDB. We curate a dataset of 577 hetero-oligomeric complexes to benchmark these annotations, which reveals an accuracy >94%. When homology information is not available, we compare QS across repositories (PDB, PISA, and EPPIC) to derive confidence estimates. This work provides high-quality annotations along with a large benchmark dataset of hetero-assemblies.


Assuntos
Modelos Moleculares , Estrutura Quaternária de Proteína , Proteínas/metabolismo , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Ligação Proteica
5.
Front Mol Biosci ; 8: 787510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071324

RESUMO

The identification of physiologically relevant quaternary structures (QSs) in crystal lattices is challenging. To predict the physiological relevance of a particular QS, QSalign searches for homologous structures in which subunits interact in the same geometry. This approach proved accurate but was limited to structures already present in the Protein Data Bank (PDB). Here, we introduce a webserver (www.QSalign.org) allowing users to submit homo-oligomeric structures of their choice to the QSalign pipeline. Given a user-uploaded structure, the sequence is extracted and used to search homologs based on sequence similarity and PFAM domain architecture. If structural conservation is detected between a homolog and the user-uploaded QS, physiological relevance is inferred. The web server also generates alternative QSs with PISA and processes them the same way as the query submitted to widen the predictions. The result page also shows representative QSs in the protein family of the query, which is informative if no QS conservation was detected or if the protein appears monomeric. These representative QSs can also serve as a starting point for homology modeling.

6.
ACS Omega ; 4(14): 16191-16200, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592486

RESUMO

A water-soluble perylene diimide, aspartic acid-functionalized perylene diimide (APDI), has shown significant sequential "turn-off" and "turn-on" responses toward Cu2+ and inorganic pyrophosphate (PPi), respectively. APDI was found to show selectivity toward Cu2+ and inorganic PPi over adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The detection has been studied by absorption and emission spectroscopy techniques. Incorporation of Cu2+ into the solution of APDI results in a distinct quenching of the fluorescence intensity, while there was no spectral change in the presence of other metal ions. The formed APDI-Cu2+ ensemble can turn on its fluorescence signal when PPi is present. The detection of PPi could be traced by looking at the change in color of the solution under the naked eye. No interference was observed from other anions, making the APDI-Cu2+aggregate a highly selective biosensor for PPi.

7.
Sci Data ; 6(1): 64, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101822

RESUMO

Proteins can self-associate with copies of themselves to form symmetric complexes called homomers. Homomers are widespread in all kingdoms of life and allow for unique geometric and functional properties, as reflected in viral capsids or allostery. Once a protein forms a homomer, however, its internal symmetry can compound the effect of point mutations and trigger uncontrolled self-assembly into high-order structures. We identified mutation hot spots for supramolecular assembly, which are predictable by geometry. Here, we present a dataset of descriptors that characterize these hot spot positions both geometrically and chemically, as well as computer scripts allowing the calculation and visualization of these properties for homomers of choice. Since the biological relevance of homomers is not readily available from their X-ray crystallographic structure, we also provide reliability estimates obtained by methods we recently developed. These data have implications in the study of disease-causing mutations, protein evolution and can be exploited in the design of biomaterials.


Assuntos
Conformação Proteica , Proteínas/química , Proteínas/genética , Cristalografia por Raios X , Evolução Molecular
8.
Methods Mol Biol ; 1764: 357-375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29605927

RESUMO

A precise knowledge of the quaternary structure of proteins is essential to illuminate both their function and their evolution. The major part of our knowledge on quaternary structure is inferred from X-ray crystallography data, but this inference process is hard and error-prone. The difficulty lies in discriminating fortuitous protein contacts, which make up the lattice of protein crystals, from biological protein contacts that exist in the native cellular environment. Here, we review methods devised to discriminate between both types of contacts and describe resources for downloading protein quaternary structure information and identifying high-confidence quaternary structures. The use of high-confidence datasets of quaternary structures will be critical for the analysis of structural, functional, and evolutionary properties of proteins.


Assuntos
Cristalografia por Raios X/métodos , Mineração de Dados/estatística & dados numéricos , Bases de Dados de Proteínas , Estrutura Quaternária de Proteína , Proteínas/química , Homologia Estrutural de Proteína , Algoritmos , Evolução Molecular , Modelos Moleculares , Proteínas/classificação
9.
Nat Methods ; 15(1): 67-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155427

RESUMO

Protein structures are key to understanding biomolecular mechanisms and diseases, yet their interpretation is hampered by limited knowledge of their biologically relevant quaternary structure (QS). A critical challenge in inferring QS information from crystallographic data is distinguishing biological interfaces from fortuitous crystal-packing contacts. Here, we tackled this problem by developing strategies for aligning and comparing QS states across both homologs and data repositories. QS conservation across homologs proved remarkably strong at predicting biological relevance and is implemented in two methods, QSalign and anti-QSalign, for annotating homo-oligomers and monomers, respectively. QS conservation across repositories is implemented in QSbio (http://www.QSbio.org), which approaches the accuracy of manual curation and allowed us to predict >100,000 QS states across the Protein Data Bank. Based on this high-quality data set, we analyzed pairs of structurally conserved interfaces, and this analysis revealed a striking plasticity whereby evolutionary distant interfaces maintain similar interaction geometries through widely divergent chemical properties.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas/química , Humanos , Modelos Moleculares , Ligação Proteica
10.
Sci Transl Med ; 9(378)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228601

RESUMO

Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A-mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A-null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A-null cell lines. EZH2 inhibition delayed tumor onset in KDM6A-null cells and caused regression of KDM6A-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A, which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
11.
Nat Genet ; 47(11): 1341-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437033

RESUMO

Breast fibroepithelial tumors comprise a heterogeneous spectrum of pathological entities, from benign fibroadenomas to malignant phyllodes tumors. Although MED12 mutations have been frequently found in fibroadenomas and phyllodes tumors, the landscapes of genetic alterations across the fibroepithelial tumor spectrum remain unclear. Here, by performing exome sequencing of 22 phyllodes tumors followed by targeted sequencing of 100 breast fibroepithelial tumors, we observed three distinct somatic mutation patterns. First, we frequently observed MED12 and RARA mutations in both fibroadenomas and phyllodes tumors, emphasizing the importance of these mutations in fibroepithelial tumorigenesis. Second, phyllodes tumors exhibited mutations in FLNA, SETD2 and KMT2D, suggesting a role in driving phyllodes tumor development. Third, borderline and malignant phyllodes tumors harbored additional mutations in cancer-associated genes. RARA mutations exhibited clustering in the portion of the gene encoding the ligand-binding domain, functionally suppressed RARA-mediated transcriptional activation and enhanced RARA interactions with transcriptional co-repressors. This study provides insights into the molecular pathogenesis of breast fibroepithelial tumors, with potential clinical implications.


Assuntos
Neoplasias da Mama/genética , Fibroadenoma/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Mutação , Tumor Filoide/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exoma/genética , Feminino , Fibroadenoma/metabolismo , Filaminas/genética , Filaminas/metabolismo , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade , Complexo Mediador/genética , Complexo Mediador/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tumor Filoide/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Adulto Jovem
12.
Biopolymers ; 101(5): 441-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23996674

RESUMO

Elucidating protein function from its structure is central to the understanding of cellular mechanisms. This involves deciphering the dependence of local structural motifs on sequence. These structural motifs may be stabilized by direct or water-mediated hydrogen bonding among the constituent residues. π-Turns, defined by interactions between (i) and (i + 5) positions, are large enough to contain a central space that can embed a water molecule (or a protein moiety) to form a stable structure. This work is an analysis of such embedded π-turns using a nonredundant dataset of protein structures. A total of 2965 embedded π-turns have been identified, as also 281 embedded Schellman motif, a type of π-turn which occurs at the C-termini of α-helices. Embedded π-turns and Schellman motifs have been classified on the basis of the protein atoms of the terminal turn residues that are linked by the embedded moiety, conformation, residue composition, and compared with the turns that have terminal residues connected by direct hydrogen bonds. Geometrically, the turns have been fitted to a circle and the position of the linker relative to its center analyzed. The hydroxyl group of Ser and Thr, located at (i + 3) position, is the most prominent linker for the side-chain mediated π-turns. Consideration of residue conservation among homologous sequences indicates the terminal and the linker positions to be the most conserved. The embedded π-turn as a binding site (for the linker) is discussed in the context of "nest," a concave depression that is formed in protein structures with adjacent residues having enantiomeric main-chain conformations.


Assuntos
Proteínas/química , Água/química , Motivos de Aminoácidos , Aminoácidos/química , Sequência Conservada , Modelos Moleculares , Estrutura Secundária de Proteína
13.
Biochimie ; 95(4): 912-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23274130

RESUMO

Protein l-isoaspartyl-O-methyltransferase (PIMT) is an ubiquitous enzyme widely distributed in cells and plays a role in the repair of deamidated and isomerized proteins. In this study, we show that this enzyme is present in cytosolic extract of Vibrio cholerae, an enteric pathogenic Gram-negative bacterium and is enzymatically active. Additionally, we focus on the detailed biophysical characterization of the recombinant PIMT from V. cholerae to gain insight into its structure, stability and the cofactor binding. The equilibrium denaturation of PIMT has been studied using tryptophan fluorescence and CD spectroscopy. The far- and near-UV CD, as well as fluorescence experiments reveal the presence of a non-native intermediate in the folding pathway. Binding of the hydrophobic fluorescent probe, bis-ANS, to the intermediate occurs with high affinity because of the exposure of the hydrophobic clusters during the unfolding process. The existence of the probable intermediate has also been confirmed from limited tryptic digestion and DLS experiments. The protein shows higher binding affinity for AdoHcy, in comparison to AdoMet, and the binding increases the midpoint of thermal unfolding by 6 and 5 °C, respectively. Modeling and molecular dynamics simulations also support the higher stability of the protein in presence of AdoHcy.


Assuntos
Coenzimas/metabolismo , Osmose/efeitos dos fármacos , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Desdobramento de Proteína/efeitos dos fármacos , Vibrio cholerae/enzimologia , Glicerol/farmacologia , Guanidina/farmacologia , Metilaminas/farmacologia , Modelos Moleculares , Conformação Proteica , S-Adenosilmetionina/metabolismo , Solventes/química , Estresse Fisiológico , Termodinâmica , Triptofano , Vibrio cholerae/fisiologia
14.
PLoS One ; 7(5): e37468, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649528

RESUMO

Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ∼pH 7.2, B form ∼pH 9.0 and F form ∼pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants K(a) for N and B isomers were found to be 6.09×10(5 )M(-1) and 4.47×10(5) M(-1), respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1:1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site.


Assuntos
Butiratos/química , Butiratos/metabolismo , Modelos Moleculares , Naftalimidas/química , Naftalimidas/metabolismo , Albumina Sérica/metabolismo , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Humanos , Estrutura Molecular , Ligação Proteica , Albumina Sérica/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
15.
Nucleic Acids Res ; 40(15): 7150-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22641851

RESUMO

We present a set of four parameters that in combination can predict DNA-binding residues on protein structures to a high degree of accuracy. These are the number of evolutionary conserved residues (N(cons)) and their spatial clustering (ρ(e)), hydrogen bond donor capability (D(p)) and residue propensity (R(p)). We first used these parameters to characterize 130 interfaces in a set of 126 DNA-binding proteins (DBPs). The applicability of these parameters both individually and in combination, to distinguish the true binding region from the rest of the protein surface was then analyzed. R(p) shows the best performance identifying the true interface with the top rank in 83% cases. Importantly, we also used the unbound-bound test cases of the protein-DNA docking benchmark to test the efficacy of our method. When applied to the unbound form of the DBPs, R(p) can distinguish 86% cases. Finally, we have applied the SVM approach for recognizing the interface region using the above parameters along with the individual amino acid composition as attributes. The accuracy of prediction is 90.5% for the bound structures and 93.6% for the unbound form of the proteins.


Assuntos
Aminoácidos/química , Proteínas de Ligação a DNA/química , Máquina de Vetores de Suporte , Aminoácidos/análise , Sítios de Ligação , DNA/química , Evolução Molecular , Ligação de Hidrogênio , Conformação Proteica , Proteínas de Ligação a RNA/química , Reprodutibilidade dos Testes
16.
Biophys J ; 102(7): 1580-9, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22500758

RESUMO

Stability and induction of the lysogenic state of bacteriophage λ are balanced by a complex regulatory network. A key feature of this network is the mutually exclusive cooperative binding of a repressor dimer (CI) to one of two pairs of binding sites, O(R)1-O(R)2 or O(R)2-O(R)3. The structural features that underpin the mutually exclusive binding mode are not well understood. Recent studies have demonstrated that CI is an asymmetric dimer. The functional importance of the asymmetry is not fully clear. Due to the asymmetric nature of the CI dimer as well as its binding sites, there are two possible bound orientations. By fluorescence resonance energy transfer measurements we showed that CI prefers one bound orientation. We also demonstrated that the relative configuration of the binding sites is important for CI dimer-dimer interactions and consequent cooperative binding. We proposed that the operator configuration dictates the orientations of the bound CI molecules, which in turn dictates CI cooperative interaction between the O(R)1-O(R)2 or O(R)2-O(R)3, but not both. Modeling suggests that the relative orientation of the C- and N-terminal domains may play an important role in the mutually exclusive nature of the cooperative binding. This work correlates unique structural features of a transcription regulatory protein with the functional properties of a gene regulatory network.


Assuntos
Redes Reguladoras de Genes , Proteínas Repressoras/metabolismo , Proteínas Virais/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Virais/química
17.
Proteins ; 79(10): 2861-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21905111

RESUMO

We perform an analysis of the quaternary structure and dimer/dimer interface in the crystal structures of 165 human hemoglobin tetramers; 112 are in the T, 17 the R, 14 the Y (or R2) state; 11 are high-affinity T state mutants, and 11 may either be intermediates between the states, or off the allosteric transition pathway. The tertiary structure is fixed within each state, in spite of the different ligands, mutations, and chemical modifications present in individual entries. The geometry of the tetramer assembly is essentially the same in all the R or the Y state entries; it is slightly different in high salt and low salt crystals of T state hemoglobins. The dimer/dimer interface differs in terms of size, chemical composition and polar interactions, between the states. It is loosely packed, like crystal packing contacts or the subunit interface of weakly associated homodimers, and unlike most oligomeric proteins, which have close-packed interfaces. The loose packing is most obvious in the liganded forms, where the tetramer is known to dissociate at low concentration. We identify cavities that contribute to the loose packing of the α1ß2 and α2ß1 contacts. Two pairs of cavities occur recurrently in both the T and the R state tetramers. They may contribute to the allosteric mechanism by facilitating the subunit movements and the tertiary structure changes that accompany the transition from T to R to Y.


Assuntos
Hemoglobinas/química , Hemoglobinas/metabolismo , Bases de Dados de Proteínas , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Biochemistry ; 50(14): 2962-72, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21366345

RESUMO

Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V. cholerae strain O395 in Escherichia coli to homogeneity and determined its biological activity. The unfolding of the purified protein was investigated using circular dichroism and intrinsic tryptophan fluorescence. Because Ace is predominantly a hydrophobic protein, the degree of exposure of hydrophobic regions was identified from the spectral changes of the environment-sensitive fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) that quenches the fluorescence of tryptophan residues of Ace in a concentration-dependent manner. Results showed that bis-ANS binds one monomeric unit of Ace with a 1:1 stoichiometry and a K' of 0.72 µM. Ace exists as a dimer, with higher oligomeric forms appearing upon glutaraldehyde cross-linking. This study also reports the binding of virstatin, a small molecule that inhibits virulence regulation in V. cholerae, to Ace. The binding constant (K=9×10(4) M(-1)) and the standard free energy change (ΔG°=-12 kcal mol(-1)) of Ace-virstatin interaction have been evaluated by the fluorescence quenching method. The binding does not affect the oligomeric status of Ace. A cell viability assay of the antibacterial activity of Ace has been performed using various microbial strains. A homology model of Ace, consistent with the experimental results, has been constructed.


Assuntos
Toxina da Cólera/química , Toxina da Cólera/metabolismo , Vibrio cholerae/metabolismo , Algoritmos , Sequência de Aminoácidos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Sequência de Bases , Butiratos/química , Butiratos/metabolismo , Toxina da Cólera/genética , Dicroísmo Circular , Relação Dose-Resposta a Droga , Glutaral/química , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Naftalimidas/química , Naftalimidas/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Espectrometria de Fluorescência , Vibrio cholerae/genética
19.
J Colloid Interface Sci ; 355(2): 402-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21216410

RESUMO

We have conjugated chloroquine, an anti-malarial, antiviral and anti-tumor drug, with thiol-functionalized gold nanoparticles and studied their binding interaction with bovine serum albumin (BSA) protein. Gold nanoparticles have been synthesized using sodium borohydride as reducing agent and 11-mercaptoundecanoic acid as thiol functionalizing ligand in aqueous medium. The formation of gold nanoparticles was confirmed from the characteristic surface plasmon absorption band at 522 nm and transmission electron microscopy revealed the average particle size to be ~7 nm. Chloroquine was conjugated to thiolated gold nanoparticles by using EDC/NHS chemistry and the binding was analyzed using optical density measurement and Fourier transform infrared spectroscopy. The chloroquine-conjugated gold nanoparticles (GNP-Chl) were found to interact efficiently with BSA. Thermodynamic parameters suggest that the binding is driven by both enthalpy and entropy, accompanied with only a minor alteration in protein's structure. Competitive drug binding assay revealed that the GNP-Chl bind at warfarin binding site I in subdomain IIA of BSA and was further supported by Trp212 fluorescence quenching measurements. Unraveling the nature of interactions of GNP-Chl with BSA would pave the way for the design of nanotherapeutic agents with improved functionality, enriching the field of nanomedicine.


Assuntos
Antimaláricos/química , Cloroquina/química , Ouro/química , Nanopartículas/química , Soroalbumina Bovina/metabolismo , Animais , Antimaláricos/metabolismo , Sítios de Ligação , Boroidretos/química , Bovinos , Cloroquina/metabolismo , Ácidos Graxos/química , Ouro/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Tamanho da Partícula , Ligação Proteica , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Sulfidrila/química , Termodinâmica , Triptofano/química , Varfarina/química , Varfarina/metabolismo
20.
J Mol Biol ; 398(1): 146-60, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20156457

RESUMO

We analyzed subunit interfaces in 315 homodimers with an X-ray structure in the Protein Data Bank, validated by checking the literature for data that indicate that the proteins are dimeric in solution and that, in the case of the "weak" dimers, the homodimer is in equilibrium with the monomer. The interfaces of the 42 weak dimers, which are smaller by a factor of 2.4 on average than in the remainder of the set, are comparable in size with antibody-antigen or protease-inhibitor interfaces. Nevertheless, they are more hydrophobic than in the average transient protein-protein complex and similar in amino acid composition to the other homodimer interfaces. The mean numbers of interface hydrogen bonds and hydration water molecules per unit area are also similar in homodimers and transient complexes. Parameters related to the atomic packing suggest that many of the weak dimer interfaces are loosely packed, and we suggest that this contributes to their low stability. To evaluate the evolutionary selection pressure on interface residues, we calculated the Shannon entropy of homologous amino acid sequences at 60% sequence identity. In 93% of the homodimers, the interface residues are better conserved than the residues on the protein surface. The weak dimers display the same high degree of interface conservation as other homodimers, but their homologs may be heterodimers as well as homodimers. Their interfaces may be good models in terms of their size, composition, and evolutionary conservation for the labile subunit contacts that allow protein assemblies to share and exchange components, allosteric proteins to undergo quaternary structure transitions, and molecular machines to operate in the cell.


Assuntos
Subunidades Proteicas/química , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Sítios de Ligação/genética , Bases de Dados de Proteínas , Dimerização , Entropia , Evolução Molecular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica/genética , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Água/química , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...